Gakushuin

Multi tool use
A Corporação Escola Gakushuin, ou simplesmente Gakushuin (学習院), foi uma instituição educacional estabelecida em Tóquio no ano de 1877, durante o período Meiji, onde filhos da aristocracia japonesa (Kazoku) estudavam. Suas portas, entretanto, acabaram sendo abertas para descendentes de famílias extremamente ricas. Entre os famosos alunos, estão o Imperador Showa (Hirohito), o atual Imperador do Japão (Akihito), o escritor e dramaturgo Yukio Mishima e Yoko Ono, viúva de John Lennon.
Depois da Segunda Guerra Mundial, Gakushuin tornou-se uma instituição privada e subseqüentemente estabeleceu novas filiais, das quais a mais importante é a Universidade de Gakushuin, que não deve ser confundida com a escola original para filhos de nobres.
Ver também |
Kano Jigoro - estudou em Gakushuin
Inagaki Manjiro - ensinou brevemente em Gakushuin
Kikuchi Dairoku - presidente brevemente
Nogi Maresuke - presidente brevemente
Miyazaki Hayao - diretor de animação graduado em Gakushuin
Princesa Aiko - herdeira do Trono do Crisântemo
Ligações externas |
xJvs,lClPl6XbYQ5QbcW87VO76x4 tMS1t6ef,lHpjUtIHcR7ZzwVeF x6ipybzQ,HGf3kujis3tMgF1Fn3rr1kgxrvvrBSCT5vEkSSu
Popular posts from this blog
0
I found a lot of questions abount appendices and ToC. Many users want appendices to be grouped in an Appendix part, however some problems arise with ToC, hyperref, PDF viewer bookmarks, and so on. There are different solutions which require extra packages, command patching and other extra code, however none of them satisfies me. I almost found an easy way to accomplish a good result, where appendices are added to bookmarks in the right way and hyperref links point to the right page. However, the number of the "Appendix" part page is wrong (it's the number of appendix A). Is there any EASY way to fix that? This is a MWE: documentclass{book} usepackage[nottoc,notlot,notlof]{tocbibind} usepackage{hyperref} begin{document} frontmatter tableofcontents mainmatter part{First} chapter{...
1
In the sklearn.model_selection.cross_val_predict page it is stated: Generate cross-validated estimates for each input data point. It is not appropriate to pass these predictions into an evaluation metric. Can someone explain what does it mean? If this gives estimate of Y (y prediction) for every Y (true Y), why can't I calculate metrics such as RMSE or coefficient of determination using these results?
python scikit-learn cross-validation
share | improve this question
edited Nov 28 '18 at 17:52
desertnaut
20.3k 7 43 79
...
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ height:90px;width:728px;box-sizing:border-box;
}
0
I have written a function using curl to generate the token. I check whether the token exists; if not, then I execute the function, otherwise I skip this function and proceed to next. But I am not sure that it will work if a token is expired. Is there any command to identify the expired token and generates the new one by calling this function? #!/bin/ksh export V_TOKEN="gen_token_${V_DATE}.txt" #### Calling function to generate the token function callPOST { curl -X POST -H 'Content-Type: application/x-www-form-url' -d 'grant_type=password&username=usr01&password=pwd...