San Felipe de Puerto Plata

Multi tool use
San Felipe de Puerto Plata |
|
|
|

San Felipe de Puerto Plata
|
Coordenadas
|
19° 48' N 70° 41' O
|
País
|
República Dominicana
|
Província
|
Puerto Plata
|
San Felipe de Puerto Plata, ou Puerto de Plata, muitas vezes referida simplesmente como Puerto Plata, é a nona maior cidade da República Dominicana e capital da província de Puerto Plata.[1] A cidade tem um dos portos mais importantes do país.
Sua população estimada em 2012 era de 286 558 habitantes.[2]
Referências
↑ «Expansión Urbana de las ciudades capitales de RD: 1988-2010». Santo Domingo: Oficina Nacional de Estadística. 1 de maio de 2015. ISBN 978-9945-8984-3-9. Consultado em 25 de janeiro de 2016
↑ Censo 2012 de población y vivienda, Oficina Nacional de Estadística
Fontes |
World Gazeteer: República Dominicana – World-Gazetteer.com
Portal da República Dominicana
 |
Este artigo sobre Geografia da República Dominicana é um esboço. Você pode ajudar a Wikipédia expandindo-o. |
z9k 1q,A5RgKxwcGDS99IKRfIaim2IKhcUAWiJ6o8vIlb0CkFpLLVdbrkL4Y,sJrLRr K4U53A 70KessKVMhx2MvJI 7 P,hNX
Popular posts from this blog
0
I found a lot of questions abount appendices and ToC. Many users want appendices to be grouped in an Appendix part, however some problems arise with ToC, hyperref, PDF viewer bookmarks, and so on. There are different solutions which require extra packages, command patching and other extra code, however none of them satisfies me. I almost found an easy way to accomplish a good result, where appendices are added to bookmarks in the right way and hyperref links point to the right page. However, the number of the "Appendix" part page is wrong (it's the number of appendix A). Is there any EASY way to fix that? This is a MWE: documentclass{book} usepackage[nottoc,notlot,notlof]{tocbibind} usepackage{hyperref} begin{document} frontmatter tableofcontents mainmatter part{First} chapter{...
1
In the sklearn.model_selection.cross_val_predict page it is stated: Generate cross-validated estimates for each input data point. It is not appropriate to pass these predictions into an evaluation metric. Can someone explain what does it mean? If this gives estimate of Y (y prediction) for every Y (true Y), why can't I calculate metrics such as RMSE or coefficient of determination using these results?
python scikit-learn cross-validation
share | improve this question
edited Nov 28 '18 at 17:52
desertnaut
20.3k 7 43 79
...
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ height:90px;width:728px;box-sizing:border-box;
}
0
I have written a function using curl to generate the token. I check whether the token exists; if not, then I execute the function, otherwise I skip this function and proceed to next. But I am not sure that it will work if a token is expired. Is there any command to identify the expired token and generates the new one by calling this function? #!/bin/ksh export V_TOKEN="gen_token_${V_DATE}.txt" #### Calling function to generate the token function callPOST { curl -X POST -H 'Content-Type: application/x-www-form-url' -d 'grant_type=password&username=usr01&password=pwd...