Macrobiotus shonaicus

Multi tool use
Macrobiotus shonaicus
|
A. Visão dorsoviral do holótipo (PCM) B Vista dorsal do paratipo (SEM C – E. "Close-up", respectivamente, do anterior, mediana e posterior do paratipo, mostrando poros (SEM). Barras de escala em μm.
|
Classificação científica
|
Reino:
|
Animalia
|
Filo:
|
Tardigrada
|
Classe:
|
Eutardigrada
|
Ordem:
|
Parachaela
|
Família:
|
Macrobiotidae
|
Género:
|
Macrobiotus
|
Espécie:
|
shonaicus Stec et al., 2018
Localidade tipo de M. shonaicus
|
|
Macrobiotus shonaicus (em japonês: ショウナイチョウメイムシ) é uma espécie de tardigrada da família Macrobiotidae. Desde 2018 só é conhecido de sua localidade tipo: Tsuruoka, no Japão. A descrição da espécie foi publicada em 2018[1].
Referências
↑ New species of ‘water bear’ discovered in Japanese parking lot por Mke Wehner, New York Post (2018)
 |
Este artigo sobre Invertebrados, integrado no Projeto Invertebrados é um esboço. Você pode ajudar a Wikipédia expandindo-o. |
Portal da zoologia
0t mqs3YeZDddYLbuXh 0QR xZWUcDOHln0AmQfpt n9nCbOXiWcLoCJudUsKTOBBf WRXG4y8NYi,aLiq
Popular posts from this blog
0
I found a lot of questions abount appendices and ToC. Many users want appendices to be grouped in an Appendix part, however some problems arise with ToC, hyperref, PDF viewer bookmarks, and so on. There are different solutions which require extra packages, command patching and other extra code, however none of them satisfies me. I almost found an easy way to accomplish a good result, where appendices are added to bookmarks in the right way and hyperref links point to the right page. However, the number of the "Appendix" part page is wrong (it's the number of appendix A). Is there any EASY way to fix that? This is a MWE: documentclass{book} usepackage[nottoc,notlot,notlof]{tocbibind} usepackage{hyperref} begin{document} frontmatter tableofcontents mainmatter part{First} chapter{...
1
In the sklearn.model_selection.cross_val_predict page it is stated: Generate cross-validated estimates for each input data point. It is not appropriate to pass these predictions into an evaluation metric. Can someone explain what does it mean? If this gives estimate of Y (y prediction) for every Y (true Y), why can't I calculate metrics such as RMSE or coefficient of determination using these results?
python scikit-learn cross-validation
share | improve this question
edited Nov 28 '18 at 17:52
desertnaut
20.3k 7 43 79
...
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ height:90px;width:728px;box-sizing:border-box;
}
0
I have written a function using curl to generate the token. I check whether the token exists; if not, then I execute the function, otherwise I skip this function and proceed to next. But I am not sure that it will work if a token is expired. Is there any command to identify the expired token and generates the new one by calling this function? #!/bin/ksh export V_TOKEN="gen_token_${V_DATE}.txt" #### Calling function to generate the token function callPOST { curl -X POST -H 'Content-Type: application/x-www-form-url' -d 'grant_type=password&username=usr01&password=pwd...