Index Catalogue

Multi tool use
Index Catalogue (IC) é o catálogo que complementa o NGC onde é compreendido um catálogo de galáxias, nebulosas e aglomerados estelares. Seus objetos são identificados pelas iniciais IC seguida de número(s). A publicação foi feita por J. L. E. Dreyer em 1895, e foi expandido para mais de 5000 objetos, conhecido por objetos IC. Em 1910 passou a ter 5836 objetos, dos quais 2400 são galáxias.
Exemplos |
- IC 1
- IC 2
- IC 10
- IC 349
- IC 405
- IC 434
- IC 443
- IC 1318
- IC 1396
- IC 1805
- IC 1848
- IC 2602
- IC 2177
- IC 2944
- IC 4606
- IC 5067
- IC 5146
Ligações externas |
- IC da NGC/IC - Site oficial
 |
Este artigo sobre astronomia é um esboço relacionado ao Projeto Astronomia. Você pode ajudar a Wikipédia expandindo-o.
|
zZ TRXeZVMkc1sldP6g7YhT1Ls8AV 3J7bF6SlM,SeS I,4zxt,qYpO,uQU q,8E XMPUQCKF3o,RCAiSMd9oX3QE
Popular posts from this blog
0
I found a lot of questions abount appendices and ToC. Many users want appendices to be grouped in an Appendix part, however some problems arise with ToC, hyperref, PDF viewer bookmarks, and so on. There are different solutions which require extra packages, command patching and other extra code, however none of them satisfies me. I almost found an easy way to accomplish a good result, where appendices are added to bookmarks in the right way and hyperref links point to the right page. However, the number of the "Appendix" part page is wrong (it's the number of appendix A). Is there any EASY way to fix that? This is a MWE: documentclass{book} usepackage[nottoc,notlot,notlof]{tocbibind} usepackage{hyperref} begin{document} frontmatter tableofcontents mainmatter part{First} chapter{...
1
In the sklearn.model_selection.cross_val_predict page it is stated: Generate cross-validated estimates for each input data point. It is not appropriate to pass these predictions into an evaluation metric. Can someone explain what does it mean? If this gives estimate of Y (y prediction) for every Y (true Y), why can't I calculate metrics such as RMSE or coefficient of determination using these results?
python scikit-learn cross-validation
share | improve this question
edited Nov 28 '18 at 17:52
desertnaut
20.3k 7 43 79
...
0
I have problem with inserting data to MySQL from modal. My modal: <a href="#" class="badge badge-pill badge-success">6 komentarzy</a> <a href="#" class="badge badge-pill badge-danger">brak komentarzy</a> <a data-toggle="modal" href="#add_desk_comm_{$desk_['desk_id']}" data-target="#add_desk_comm_{$desk_['desk_id']}" class="ediiit">(dodaj)</a> <div class="modal fade" id="add_desk_comm_{$desk_['desk_id']}" tabindex="-1" role="dialog" aria-labelledby="edit_printer" aria-hidden="true"> <div class="modal-dialog" role="document"> ...